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Transfer Functions Poles, Zeros & Causality Time Response Stability Analysis

Previous Class
Laplace transforms
Transfer functions – from ordinary linear differential equations
System interconnections
Block diagram algebra – simplification of interconnections
General feedback control system interconnection.
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Standard Control System
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Compactly

Ger(s) Ged(s) Gen(s)

Gyr(s) Gyd(s) Gyn(s)

R(s)
D(s)
N(s)

(
E(s)
Y (s)

)
Or

(
E(s)
Y (s)

)
=

[
Ger(s) Ged(s) Gen(s)

Gyr(s) Gyd(s) Gyn(s)

]R(s)
D(s)
N(s)


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Response to Input

(
E
Y

)
=

[
Ger Ged Gen

Gyr Gyd Gyn

]R
D
N


implies

E = GerR+GedD +GenN,

Y = GyrR+GydD +GynN.

Therefore,

e(t) = L−1 {GerR}+ L−1 {GedD}+ L−1 {GenN} ,
y(t) = L−1 {GyrR}+ L−1 {GydD}+ L−1 {GynN} .

Given signals r(t), d(t), n(t), we can determine e(t) and y(t).
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Definition of Various Transfer Functions
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Derive Ger.
Ignore d and n.

E = R− Ym, U = C(s)E,

Y = P (s)(U +D) = P (s)U, Ym = Y +N = Y.

Simplification

E

R
= Ger =

1

1 + PC
.
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Definition of Various Transfer Functions
contd.

C P
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+
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−
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Ger =
1

1 + PC
, Ged = − P

1 + PC
, Gen = − 1

1 + PC
,

Gyr =
PC

1 + PC
, Gyd =

P

1 + PC
, Gyn = − PC

1 + PC
.

Learn to derive these expressions.
Denominator of all transfer functions: 1 + PC.
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Example
Let

P =
1

(s+ 1)(s+ 2)
, C = 1.

Look at

Gyr =
PC

1 + PC
=

1
(s+1)(s+2)

1 + 1
(s+1)(s+2)

=
1

1 + (s+ 1)(s+ 2)

Response to reference r(t) = 1(t)?

Y (s) = Gyr(s)R(s) =
1

1 + (s+ 1)(s+ 2)
L{1(t)}

=
1

1 + (s+ 1)(s+ 2)
· 1
s
=

1

s(s2 + 3s+ 3)
.

⇒ y(t) =
1

3
−

e− 3 t
2

(
cos
(√

3 t
2

)
+
√
3 sin

(√
3 t
2

))
3
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Example
Response to r(t) = 1(t).
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Example
What about d(t) = sin(t)/10?

Y (s) = Gyd(s)D(s) =
P

1 + PC
L{sin(t)/10}

y(t) =
sin(t)
65

− 3 cos(t)
130

+

3 e− 3 t
2

(
cos
(√

3 t
2

)
+

5
√
3 sin

(√
3 t
2

)
9

)
130

.
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Total Response
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y(t) = L−1 {GyrR}+ L−1 {GydD} .

In general d(t) and n(t) are more complicated functions of time.
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Poles and Zeros
Given transfer function G(s) between two signals
Let G(s) := NG(s)

DG(s) Rational polynomials

Roots of NG(s) are called zeros of G(s)
▶ Let there be m roots of NG(s)
▶ NG(s) = Πm

i=1(s− zi)

Roots of DG(s) are called poles of G(s).
▶ Let there be n roots of DG(s)
▶ DG(s) = Πn

i=1(s− pi)

The equation DG(s) = 0 is called the characteristic equation
G(s) often is written as

G(s) =
Πm

i=1(s− zi)

Πn
i=1(s− pi)

Relative degree: n−m

n > m G(s) is strictly proper
n ≥ m G(s) is proper
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Causality
Causal

A system is causal when the effect does not anticipate the cause; or zero input
produces zero output
Its output and internal states only depend on current and previous input values
Physical systems are causal
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Causality
contd.

Acausal
A system whose output is nonzero when the past and present input signal is zero
is said to be anticipative
A system whose state and output depend also on input values from the future,
besides the past or current input values, is called acausal
Acausal systems can only exist as digital filters (digital signal processing).
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Causality
contd.

Anti-Causal
A system whose output depends only on future input values is anti-causal
Derivative of a signal is anti-causal.

AERO 422, Instructor: Raktim Bhattacharya 16 / 46



Transfer Functions Poles, Zeros & Causality Time Response Stability Analysis

Causality
contd.

Zeros are anticipative
Poles are causal
Overall behavior depends on m and n.
Causal: n > m, strictly proper
Causal: n = m, still causal, but there is instantaneous transfer of information
from input to output
Acausal: n < m
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Example
System G1(s) = s

Input u(t) = sin(ωt), U(s) = ω
s2+ω2

y1(t) = L−1 {G1(s)U(s)} = L−1
{

sω
s2+ω2

}
= ω cos(ωt), or

u(t) = sin(ωt)
y1(t) = ω sin(ωt+ π/2)

= ωu(t+
π

2ω
) output leads input, anticipatory

AERO 422, Instructor: Raktim Bhattacharya 18 / 46



Transfer Functions Poles, Zeros & Causality Time Response Stability Analysis

Example
contd.

System G2(s) =
1
s

Input u(t) = sin(ωt), U(s) = ω
s2+ω2

y2(t) = L−1 {G2(s)U(s)} = L−1
{

1
s

ω
s2+ω2

}
= 1

ω − cos(ωt)
ω , or

u(t) = sin(ωt)

y2(t) =
1

ω
+

sin(ωt− π/2)

ω

=
1

ω
+

u(t− π
2ω )

ω
output lags input, causal
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Final Value Theorem -- DC Gain
Given transfer function G(s), DC gain is defined by

DC Gain = lim
s→0

G(s)

Steady-state output of G(s) to a step
Only applicable to systems with poles in LHP, or stable systems Final value is bounded

Steady state gain (limt→∞) response
What happens for causal and acausal systems?
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Initial Value Theorem - Transients
Given transfer function G(s), transient response is given

y(0+) = lim
s→∞

sG(s)

Example Let G(s) = 3
s(s−2) , unstable system. Impulse response

y(0+) = lim
s→∞

sG(s) = lim
s→∞

s
3

s(s− 2)
= 0.

What happens for causal and acausal systems?
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Impulse Response
Let G(s) be given transfer function
Let u(t) = δ(t), impulse function
U(s) = L{δ(t)} = 1

Y (s) = G(s)U(s) = G(s) · 1 = G(s)

y(t) = L−1 {G(s)} is the natural response of G(s)

Impulse response is used to obtain transfer function of a system from experimental
data.

Excite a system with δ(t) True δ(t) is difficult to realize in real world

Record y(t) from sensor data
L{y(t)} provides G(s)
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System Response and Pole Locations
Concept of Stability
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System Response and Pole Locations
contd.

Each pole (real, complex pair) represents a mode of the
response
Total response is addition of all the modes
If any one mode is divergent/unstable, the total
response is divergent/unstable
For a mode σ ± jωd

▶ σ < 0 ⇒ convergent/stable
▶ ωd damped frequency
▶ ωn :=

√
σ2 + ω2

d: natural frequency
▶ ζ := σ

ωn
: damping ratio

Example
G(s) =

1

(s+ a)(s+ b)
=

A

s+ a
+

B

s+ b

Impulse response: y(t) = Ae−at +Be−bt
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System Response and Zero Locations
Let G(s) = (s+ a)G0(s), where G0(s) has no zeros
Response of G0(s) to u(t) is

Y0(s) = G0(s)U(s)

Response of G(s) to u(t) is

Y (s) = (s+ a)G0(s)U(s)

= sG0(s)U(s) + aG0(s)U(s)

= sY0(s) + aY0(s)

Zeroes adds signal derivative

y(t) =
dy0(t)

dt
+ ay0(t)
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System Response and Zero Locations
Effect of zero near a pole

Let system be

G(s) =
s+ (a+ ϵ)

(s+ a)(s+ b)
=

ϵ

b− a

1

s+ a
+

b− (a+ ϵ)

b− a

1

s+ b

What happens when ϵ → 0?
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System Response and Zero Locations
A zero near the origin

Case 1
G(s) = (s+ z)G0(s)

DC Gain of G(s) is

lim
s→0

G(s) = lim
s→0

sG0(s) + z lim
s→0

G0(s) = z lim
s→0

G0(s)

Case 2
G(s) = (s/z + 1)G0(s)

DC gain of G(s) is

lim
s→0

G(s) =
1

z
lim
s→0

sG0(s) + lim
s→0

G0(s) = lim
s→0

G0(s)

Preferable to keep DC gain unaffected.
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System Response and Zero Locations
A zero near the origin (contd.)

G(s) = (s/z + 1)G0(s)

Let Y0(s) = G0(s)U(s) be response to input U(s)

Response of G(s) is

Y (s) = (s/z + 1)G0(s)U(s) =
1

z
sG0(s)U(s) +G0(s)U(s)

=
1

z
sY0(s) + Y0(s)

A zero near origin significantly amplifies the derivative of the response

y(t) =
1

z

dy0(t)

dt
+ y0(t)
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Step Response
Time Domain Performance Specification
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Second Order System: poles = σ ± jωd, ωn =
√
σ2 + ω2

d, ζ = σ/ωn

Mp = e−πζ/
√

1−ζ2 tr =
1.8

ωn
ts =

4.6

σ
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Step Response
Time Domain Performance Specification -- Second Order Systems

Desired Location of Poles

Mp = e−πζ/
√

1−ζ2 tr =
1.8

ωn
ts =

4.6

σ

ωn ≥ 1.8/tr ζ ≥ ζ(Mp) σ ≥ 4.6/ts
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Step Response with Zeros
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No zeros

(s+1)

(s−1)

y(t) =
dy0(t)

dt
+ ay0(t)
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Various Notions of Stability
Basic Idea

Disturbances/perturbations → 0 as t → ∞
Refinements based on how they go to zero
We talk about stability of the origin

AERO 422, Instructor: Raktim Bhattacharya 34 / 46



Transfer Functions Poles, Zeros & Causality Time Response Stability Analysis

Various Notions of Stability
contd.

The origin is usually the equilibrium or trim point of the dynamical system

ẋ = f(x(t),u(t))

Recall (x̄, ū) are trim points, i.e.

ẋ = f(x̄, ū) = 0

Here we study the stability of the perturbation dynamics

˙̃x = Ax̃+Bũ, A :=
∂f

∂x
|(x̄,ū) , B :=

∂f

∂u
|(x̄,ū) ,

where x = x̃+ x̄ and u = ũ+ ū.
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Various Notions of Stability
contd.

Stability analysis is concerned with behavior of limt→∞ x(t)

Equivalently study of limt→∞ x̃(t), for some x̃(0) = x̃0,

lim
t→∞

x̃(t) → 0 ⇔ lim
t→∞

x(t) → x̄

We study 3 kinds of stability
1. Lyapunov stability
2. Asymptotic stability
3. Exponential stability
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Lyapunov Stability

Aleksandr Mikhailovich Lyapunov

(1857–1918)

(Image: Wikipedia)

If for every ϵ > 0, there exists δ(ϵ) > 0 such that, if

∥x(0)− x̄∥ < δ

then ∀t ≥ 0 we have
∥x(t)− x̄∥ < ϵ.

How is it related to the poles of the system?
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Asymptotic Stability
The equilibrium point is said to be asymptotically stable if it is Lyapunov stable and if
there exists δ > 0 such that if

∥x(0)− x̄∥ < δ,

then
lim
t→∞

∥x(t)− x̄∥ = 0.

How is it related to the poles of the system?
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Exponential Stability
The equilibrium point is said to be exponentially stable if it is asymptotically stable
and if there exists α, β, δ > 0 such that if

∥x(0)− x̄∥ < δ,

then
∥x(t)− x̄∥ ≤ α∥x(0)− x̄∥e−βt, for t ≥ 0.

ES =⇒ AS =⇒ LS not the other way around

β is called the Lyapunov exponent
How is it related to the poles of the system?
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Stability of Linear Systems
Depends on location of poles
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Input Output Stability
Bounded Input Bounded Output

Gu y

Given |u(t)| ≤ umax < ∞, what can we say about max
t

|y(t)|?
Recall

Y (s) = G(s)U(s) =⇒ y(t) =

∫ ∞

−∞
h(τ)u(t− τ)dτ.

Therefore,

|y(t)| =
∣∣∣∣∫ hudτ

∣∣∣∣ ≤ ∫ |h||u|dτ ≤ umax

∫
|h(τ)|dτ. Cauchy-Schwarz

Bound on output y(t)

max
t

|y(t)| ≤ umax

∫
|h(τ)|dτ
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Input Output Stability
Bounded Input Bounded Output

Gu y

max
t

|y(t)| ≤ umax

∫
|h(τ)|dτ

BIBO Stability
If and only if ∫

|h(τ)|dτ < ∞.

(LTI): Re pi < 0 =⇒ BIBO stability
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BIBO Stability
Interconnected Systems

G1 G2
u y

Given G1 and G2 are BIBO stable, is the above interconnection BIBO stable?
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Input Output Stability
Pole Zero Cancellations

C P
+u+r +

d

+

n

e +y ym
−
ym

Let
C(s) =

s− 1

s+ 1
, P (s) =

1

s2 − 1
Pole Zero Cancellation

Look at transfer functions

Gyr =
PC

1 + PC
=

1

s2 + 2s+ 2
poles:−1± i

Unstable Gyd =
P

1 + PC
=

s+ 1

s3 + s2 − 2
poles:−2, 1

Input/output stability ≠⇒ MIMO system stability (internal stability).
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Input Output Stability
Pole Zero Cancellations

C P
+u+r +

d

+

n

e +y ym
−
ym

Checking all TFs is tedious

Ger =
1

1 + PC
, Ged = − P

1 + PC
, Gen = − 1

1 + PC
,

Gyr =
PC

1 + PC
, Gyd =

P

1 + PC
, Gyn = − PC

1 + PC
.

Just check zeros of 1 + PC No pole-zero cancellations
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Internal Stability

C P
+u+r +

d

+

n

e +y ym
−
ym

Theorem
The above MIMO system is internally stable iff

1. The transfer function 1 + PC has no zeros in Re s ≥ 0

2. There is no pole-zero cancellation in Re s ≥ 0 when the product PC is formed

Internal stability ensures internal signals are not unbounded.
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