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Previous Class

Laplace transforms
Transfer functions — from ordinary linear differential equations

[
[

m System interconnections

m Block diagram algebra — simplification of interconnections
[

General feedback control system interconnection.
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Transfer Functions



Transfer Functions
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Standard Control System

T ;§:> e C u/%kl5+ P ) +zl§% Ym
ym‘
Compactly
R(s)
E(s) (;ET(S)‘ Ged(s) ‘(;en(s) .
<Y(s)> Gye(5) | Gyal5) | Gyn(s) (ﬁgsi) :
r
R(s)
E(s)\ | Ger(s) ‘ Geaq(s) ‘ Gen(s) .
(Vo) =[Gt entr e (ﬁ%ﬂ)
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Response to Input

<E>_|:GerGedGen:| g
Y Gyr | Gya | Gy | \
implies
E =GR+ GegD + GenNu
Y =Gy R+ GyaD + Gy N.
Therefore,

e(t) = LG R} + L7 {GeyD} + L7 {Gen N},
y(t) = £ {GyrR} +Lt {GydD} +Lt {GynN} .

Given signals r(t),d(t),n(t), we can determine e(t) and y(t).
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Transfer Functions
[e]e]e] Jolelelele]

Definition of Various Transfer Functions

b .
rot e U +m+ ) +/.\+ Ym
>0 C @, P @,
ym‘
m Derive G,,.
m Ignore d and n.
E=R-Yy, U=C(s)E,
Y = P(s)(U+ D) = P(s)U, Yo=Y+ N=Y.
m Simplification
1
Cer 1+ PC
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Transfer Functions
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Definition of Various Transfer Functions

contd.
d n
r o4 e u +/L+ Yy ‘J{'— Ym
> C @, P @
ym‘
1 P 1
— ed= —T———=, G = -,
Ger 1+ PC’ Glea 1+ PC en 1+ PC
PC P PC
Gyr =1 + PC’ Gya = 7 + PC’ yn 1+ PC

m Learn to derive these expressions.

m Denominator of all transfer functions: 1 + PC.
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Transfer Functions
00000@000

Example
Let
S I
(s +1)(s +2)’ '
Look at .
o - PC _ G _ 1
yr — - -
1+ PC 14 gyary LG+ 1D(s+2)

Response to reference r(t) = 1(t)?
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000000800
Example

Response to r(t) = 1(t).

0.3 4

0.2 1

0.1 1

3
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000000000
Example

What about d(t) = sin(t)/10?

P
1+ PC

3 sin V3t
3o % (cos(@’j _5_45\& 9( 2 ))

L {sin(t)/10}

65 130 130
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Transfer Functions
000000008

Total Response

y(t) = LGy R} + L7 {GyaD} .

In general d(t) and n(t) are more complicated functions of time.
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Poles, Zeros & Causality
0®000000

Poles and Zeros

Given transfer function G(s) between two signals

Let G( ) gcg g Rational polynomials
Roots of N¢(s) are called zeros of G(s)
» Let there be m roots of Ng(s)
> No(s) = T (5 — =)
Roots of D¢ (s) are called poles of G(s).
» Let there be n roots of Dg(s)
> Da(s) =y (s — pi)
The equation Dg(s) = 0 is called the characteristic equation
G(s) often is written as

(s — =)
Gls) = H?:i(s - pi)

Relative degree: n — m
n > m G(s) is strictly proper
n > m G(s) is proper
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[e]e] lelele]e]e]
Causality

Causal

m A system is causal when the effect does not anticipate the cause; or zero input
produces zero output

m Its output and internal states only depend on current and previous input values

m Physical systems are causal
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[e]e]e] lele]e]e]
Causality

contd.

Acausal

m A system whose output is nonzero when the past and present input signal is zero
is said to be anticipative

m A system whose state and output depend also on input values from the future,
besides the past or current input values, is called acausal

m Acausal systems can only exist as digital filters (digital signal processing).
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Causality

contd.

Anti-Causal

m A system whose output depends only on future input values is anti-causal

m Derivative of a signal is anti-causal.
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Poles, Zeros & Causality
00000®00

Causality
contd.
m Zeros are anticipative
m Poles are causal
m Overall behavior depends on m and n.
m Causal: n > m, strictly proper
m Causal: n = m, still causal, but there is instantaneous transfer of information

from input to output

m Acausal: n <m
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Poles, Zeros & Causality
00000080

Example

m System G1(s) = s
m Input u(t) = sin(wt), U(s) =

v _
s24w?

oy (t) =L H{G1(s5)U(s)} = L1 { S } = wcos(wt), or

52 +w2

u(t) = sin(wt)
y1(t) = wsin(wt + 7/2)

7T
= wu(t + 27) output leads input, anticipatory
w
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Poles, Zeros & Causality
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Example

contd.

m System Gy(s) =1

S

m Input u(t) = sin(wt), U(s) = ¥

52 JrUJZ

my(t) = L1 {Ga(s)U(s)} = L1 {%82_5:“}2} _ % o cosf}wt), or

u(t) = sin(wt)

1 sin(wt — /2
ity = L st =/
w w
1 u(t - gp)

w

output lags input, causal
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Final Value Theorem -- DC Gain

Given transfer function G(s), DC gain is defined by

DC Gain = lim G(s)

s—0

m Steady-state output of G(s) to a step
m Only applicable to systems with poles in LHP, or stable systems Final value is bounded
m Steady state gain (lim;_,~,) response

What happens for causal and acausal systems?
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Initial Value Theorem - Transients

Given transfer function G(s), transient response is given

y(0T) = lim sG(s)

S—00

Example Let G(s) = s(% unstable system. Impulse response

2)

y(0) = lim sG(s) = lim SL = 0.

S—00 $—00 3(3— )

What happens for causal and acausal systems?
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Time Response
0008000000000

Impulse Response

Let G(s) be given transfer function

Let u(t) = 0(t), impulse function

U(s)=L{é(t)} =1

Y(s)=G(s)U(s) =G(s)-1=G(s)

y(t) = L1 {G(s)} is the natural response of G(s)

Impulse response is used to obtain transfer function of a system from experimental
data.

m Excite a system with 5(t) True §(¢) is difficult to realize in real world

m Record y(t) from sensor data
m L{y(t)} provides G(s)
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Time Response
0000800000000

System Response and Pole Locations

Concept of Stability

25

» * -
® ® % -
* * -
I I I I I
0 0.5 1 15 2 25

Real
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System Response and Pole Locations

contd.

m Each pole (real, complex pair) represents a mode of the
response

m Total response is addition of all the modes

m If any one mode is divergent/unstable, the total
response is divergent/unstable
m For a mode o + jwy

» o < 0= convergent/stable
» wy damped frequency
> wy, = /02 + w7 natural frequency
> (= wi damping ratio
Example

1 A B
Gls) = (s+a)(s+0b) _s+a+s+b

Impulse response: y(t) = Ae~ + Be™%
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& Causalit Time Response
000000 ®000000

System Response and Zero Locations

m Let G(s) = (s + a)Go(s), where Gy(s) has no zeros
m Response of Gy(s) to u(t) is

Yo(s) = Go(s)U(s)
m Response of G(s) to u(t) is

Y(s) = (s+a)Go(s)U(s)
sGo(s)U(s) + aGo(s)U(s)
= sYp(s) + aYo(s)

Zeroes adds signal derivative

y(t) = “2 + ayo(®)
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System Response and Zero Locations

Effect of zero near a pole

Let system be

s+(ate) e 1 +b—(a+6) 1
(s+a)(s+b) b—as+a b—a s+0b

G(s) =

What happens when ¢ — 07
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System Response and Zero Locations

A zero near the origin

Case 1
m G(s) = (s + 2)Gols)
m DC Gain of G(s) is

il_l)r[l) G(s) = 51_% sGo(s) + = ll_rg% Go(s) =z ll_r% Go(s)

Case 2
m G(s) = (s/z+1)Go(s)
m DC gain of G(s) is
lim G(s) = ! lim sGo(s) + lim Go(s) = lim Go(s)
s—0 5—0

s—0 z s—0

Preferable to keep DC gain unaffected.
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s & Causalit Time Response
0000000008000

System Response and Zero Locations

A zero near the origin (contd.)

m G(s) = (s/z+1)Go(s)
m Let Yj(s) = Go(s)U(s) be response to input U(s)
m Response of G(s) is

Y(s)=(s/z4+1)Go(s)U(s) = iSGo(S)U(S) + Go(s)U(s)

= s¥o(s) + Yo(s)
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Time Response
0000000000800

Step Response

Time Domain Performance Specification
Step Response

1.5
B Y S
i
051 B
00 2 4 6 8 1‘0 1‘2 1‘4 1‘6 1‘8 20
Time
Second Order System: poles = o + jwy, wp, = y/02 + w3, ( =0 /wy
M ZG*WC/\/@ tr:E ts:ﬁ
P Wn, o
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Step Response

Time Domain Performance Specification -- Second Order Systems

Desired Location of Poles

1.8 4.6
M, = e ™/V1=¢ b= by = —
Wn, o
wn > 1.8/t ¢ > (M) o> 4.6/t

TEXAS A&M | Intelligent Systems Research Laboratory AERO 422, Instructor: Raktim Bhattacharya 31/46
pac



Step Response with Zeros

Step Response

T S S —
No zeros
(s+1)
(s=1)

Amplitude

20
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Various Notions of Stability

Basic Idea

m Disturbances/perturbations — 0 as ¢t — oo

m Refinements based on how they go to zero
m We talk about stability of the origin
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Various Notions of Stability

contd.

m The origin is usually the equilibrium or trim point of the dynamical system

@ = f(x(t), u(t))

) are trim points, i.e.

m Recall (z,

&= f(z,a)=0

m Here we study the stability of the perturbation dynamics
x

where x = + & and u = u + u.

o _of _of
= Az + Bu, A= 67.@ (®,a) B := % ‘(53,17,) )
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Stability Analysis
000®0000000000

Various Notions of Stability

contd.

m Stability analysis is concerned with behavior of lim; o ()

m Equivalently study of lim;_,~ (), for some z(0) = @y,

lim (t) - 0 < lim x(t) - &

t—o00 t—o0

m We study 3 kinds of stability

1. Lyapunov stability
2. Asymptotic stability
3. Exponential stability
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Lyapunov Stability

If for every ¢ > 0, there exists 0(¢) > 0 such that, if
|z(0) — 2| < 4§

then V¢t > 0 we have
() — 2| <.

How is it related to the poles of the system?

Aleksandr Mikhailovich Lyapunov
(1857-1918)

(Image: Wikipedia)
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Asymptotic Stability
The equilibrium point is said to be asymptotically stable if it is Lyapunov stable and if

there exists 6 > 0 such that if
|2(0) — 2| <4,

then
Jim [la(t) — 2] = 0.

How is it related to the poles of the system?
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Exponential Stability

The equilibrium point is said to be exponentially stable if it is asymptotically stable
and if there exists a, 3,0 > 0 such that if

l(0) — || <,

then
|lz(t) — 2| < allx(0) — a‘cHe_Bt, for t > 0.

m ES =— AS = LS not the other way around

m ( is called the Lyapunov exponent

How is it related to the poles of the system?
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Stability Analysis

0000000000000

Stability of Linear Systems

Depends on location of poles

1 1
10
0.5
0.5 5
0
0 0
-0.5
-5
-05
0 2 4 0 2 4 0 2 4
1 2 12
10
0.8 15
8
0.6
1
6
0.4
05 B B 4
0.2 2
0
0 2 4 0 2 4 0 2 4
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Transfer Functions >oles, Zerc sé Stability Analysis

Input Output Stability

Bounded Input Bounded Output

Yy
LN e

m Given |u(t)| < umax < 00, what can we say about max ly(t)|?

m Recall
oo

Y(s)=G(s)U(s) = y(t) = / h(T)u(t — 7)dr.

— 00

Therefore,

ly(t)| = ‘/ hudr

< /‘}L|’u‘dT Sumax/h(T)’dT. Cauchy-Schwarz

Bound on output y(?)

g |y(8) < s [ 1H()]dr
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Transfer Functions Poles, Zerc Time Response Stability Analysis

Input Output Stability

Bounded Input Bounded Output

Yy
LN e

x|y (0)] < s [ 1)l dr

BIBO Stability

If and only if

/\h(T)\dT < 0.

(LTI): Re p; < 0 = BIBO stability
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Stability Analysis
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Interconnected Systems

U G G Yy

m Given GG1 and G5 are BIBO stable, is the above interconnection BIBO stable?

ey st s ey AERO 422, Instructor: Raktim Bhattacharya 43 /46



Input Output Stability

Pole Zero Cancellations

s—1 1
= — = Pole Zero Cancellation
(S) s+ 1 (S) 21 a at
m Look at transfer functions
Gy = P _ ! lesi—1 +4d
VT Y PC T 24254200
P s+ 1
poles:—2, 1

Unstable G4 = =
M T T T PO T S sz 2
Input/output stability =& MIMO system stability (internal stability).
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Input Output Stability

Pole Zero Cancellations

m Checking all TFs is tedious

1 P 1
Ger— 1—|—PC’ Ged__l—FPC’ Gen__l—FPC’

PC P PC
Gy’"_1+PC’ Gyd_1+PC’ Gy”__1+PC'

m Just check zeros of 1 + PC' No pole-zero cancellations
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Internal Stability

d n
Tt e u,-%—l+ .l/-%-l+ Ym
——0—" ¢ |>0— oO——

Theorem
The above MIMO system is internally stable iff

1. The transfer function 1 + PC has no zeros in Re s > 0

2. There is no pole-zero cancellation in Re s > 0 when the product PC'is formed

Internal stability ensures internal signals are not unbounded.
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